Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Enea, Constantin; Lal, Akash (Ed.)Many parallel programming models guarantee that if all sequentially consistent (SC) executions of a program are free of data races, then all executions of the program will appear to be sequentially consistent. This greatly simplifies reasoning about the program, but leaves open the question of how to verify that all SC executions are race-free. In this paper, we show that with a few simple modifications, model checking can be an effective tool for verifying race-freedom. We explore this technique on a suite of C programs parallelized with OpenMP.more » « less
-
Fisman, Dana; Rosu, Grigore (Ed.)Fortran is widely used in computational science, engineering, and high performance computing. This paper presents an extension to the CIVL verification framework to check correctness properties of Fortran programs. Unlike previous work that translates Fortran to C, LLVM IR, or other intermediate formats before verification, our work allows CIVL to directly consume Fortran source files. We extended the parsing, translation, and analysis phases to support Fortran-specific features such as array slicing and reshaping, and to find program violations that are specific to Fortran, such as argument aliasing rule violations, invalid use of variable and function attributes, or defects due to Fortran's unspecified expression evaluation order. We demonstrate the usefulness of our tool on a verification benchmark suite and kernels extracted from a real world application.more » « less
-
Computing derivatives is key to many algorithms in scientific computing and machine learning such as optimization, uncertainty quantification, and stability analysis. Enzyme is a LLVM compiler plugin that performs reverse-mode automatic differentiation (AD) and thus generates high performance gradients of programs in languages including C/C++, Fortran, Julia, and Rust. Prior to this work, Enzyme and other AD tools were not capable of generating gradients of GPU kernels. Our paper presents a combination of novel techniques that make Enzyme the first fully automatic reversemode AD tool to generate gradients of GPU kernels. Since unlike other tools Enzyme performs automatic differentiation within a general-purpose compiler, we are able to introduce several novel GPU and AD-specific optimizations. To show the generality and efficiency of our approach, we compute gradients of five GPU-based HPC applications, executed on NVIDIA and AMD GPUs. All benchmarks run within an order of magnitude of the original program's execution time. Without GPU and AD-specific optimizations, gradients of GPU kernels either fail to run from a lack of resources or have infeasible overhead. Finally, we demonstrate that increasing the problem size by either increasing the number of threads or increasing the work per thread, does not substantially impact the overhead from differentiation.more » « less
An official website of the United States government
